Search results
Results from the WOW.Com Content Network
The equation for Rockwell hardness is =, where d is the depth in mm (from the zero load point), and N and h are scale factors that depend on the scale of the test being used (see following section). It is typically used in engineering and metallurgy .
This page was last edited on 16 November 2024, at 12:16 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
A variety of hardness-testing methods are available, including the Vickers, Brinell, Rockwell, Meyer and Leeb tests. Although it is impossible in many cases to give an exact conversion, it is possible to give an approximate material-specific comparison table for steels .
Most metals have an -value between 0.10 and 0.50. In one study, strain hardening exponent values extracted from tensile data from 58 steel pipes from natural gas pipelines were found to range from 0.08 to 0.25, [ 1 ] with the lower end of the range dominated by high-strength low alloy steels and the upper end of the range mostly normalized steels.
It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa ⋅ m 3 / kg , or N ⋅m/kg, which is dimensionally equivalent to m 2 /s 2 , though the latter form is rarely used.
When testing coatings, scratch hardness refers to the force necessary to cut through the film to the substrate. The most common test is Mohs scale, which is used in mineralogy. One tool to make this measurement is the sclerometer. Another tool used to make these tests is the pocket hardness tester. This tool consists of a scale arm with ...
The governing standard for the Barcol hardness test is ASTM D 2583. [4] Barcol hardness is measured on a scale from 0 to 100 with the typical range being between 50B and 90B. A measurement of 60B is roughly equivalent to a Shore hardness of 80D or a Rockwell hardness M100.
Meyer's law is often used to relate hardness values based on the fact that if the weight is quartered, the diameter of the indenter is halved. For instance, the hardness values are the same for a test load of 3000 kgf with a 10 mm indenter and for a test load of 750 kgf with a 5 mm diameter indenter.