enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ramanujan–Petersson conjecture - Wikipedia

    en.wikipedia.org/wiki/Ramanujan–Petersson...

    Satake (1966) reformulated the Ramanujan–Petersson conjecture in terms of automorphic representations for GL(2) as saying that the local components of automorphic representations lie in the principal series, and suggested this condition as a generalization of the Ramanujan–Petersson conjecture to automorphic forms on other groups. Another ...

  3. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences. For instance, whenever the decimal representation of n ends in the digit 4 or 9, the number of partitions of n will be divisible by 5.

  4. Ramanujan graph - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_graph

    See Winnie Li's survey on Ramanujan's conjecture and other aspects of number theory relevant to these results. [ 5 ] Lubotzky , Phillips and Sarnak [ 2 ] and independently Margulis [ 6 ] showed how to construct an infinite family of ( p + 1 ) {\displaystyle (p+1)} -regular Ramanujan graphs, whenever p {\displaystyle p} is a prime number and p ...

  5. Ramanujan's congruences - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_congruences

    In mathematics, Ramanujan's congruences are the congruences for the partition function p(n) discovered by Srinivasa Ramanujan: (+) (), (+) (), (+) ().In plain words, e.g., the first congruence means that If a number is 4 more than a multiple of 5, i.e. it is in the sequence

  6. Ramanujan tau function - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_tau_function

    Download as PDF; Printable version; In other projects ... (1917) and the third one, called the Ramanujan conjecture, ... Ramanujan's L-function is defined by = ...

  7. Ramanujan's ternary quadratic form - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_ternary...

    In number theory, a branch of mathematics, Ramanujan's ternary quadratic form is the algebraic expression x 2 + y 2 + 10z 2 with integral values for x, y and z. [ 1 ] [ 2 ] Srinivasa Ramanujan considered this expression in a footnote in a paper [ 3 ] published in 1916 and briefly discussed the representability of integers in this form.

  8. It’s the most wonderful time of the year - but if you’re worried about how you’ll keep your dog calm this Christmas, then I’m here to help.

  9. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    Ramanujan summation is a method to isolate the constant term in the Euler–Maclaurin formula for the partial sums of a series. For a function f , the classical Ramanujan sum of the series ∑ k = 1 ∞ f ( k ) {\displaystyle \textstyle \sum _{k=1}^{\infty }f(k)} is defined as