Search results
Results from the WOW.Com Content Network
Satake (1966) reformulated the Ramanujan–Petersson conjecture in terms of automorphic representations for GL(2) as saying that the local components of automorphic representations lie in the principal series, and suggested this condition as a generalization of the Ramanujan–Petersson conjecture to automorphic forms on other groups. Another ...
See Winnie Li's survey on Ramanujan's conjecture and other aspects of number theory relevant to these results. [ 5 ] Lubotzky , Phillips and Sarnak [ 2 ] and independently Margulis [ 6 ] showed how to construct an infinite family of ( p + 1 ) {\displaystyle (p+1)} -regular Ramanujan graphs, whenever p {\displaystyle p} is a prime number and p ...
Download as PDF; Printable version; In other projects ... (1917) and the third one, called the Ramanujan conjecture, ... Ramanujan's L-function is defined by = ...
Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences. For instance, whenever the decimal representation of n ends in the digit 4 or 9, the number of partitions of n will be divisible by 5.
Lafforgue's theorem implies the Ramanujan–Petersson conjecture that if an automorphic form for GL n (F) has central character of finite order, then the corresponding Hecke eigenvalues at every unramified place have absolute value 1.
In mathematics, Ramanujan's congruences are the congruences for the partition function p(n) discovered by Srinivasa Ramanujan: (+) (), (+) (), (+) ().In plain words, e.g., the first congruence means that If a number is 4 more than a multiple of 5, i.e. it is in the sequence
A break-in at Cincinnati Bengals quarterback Burrow's home has led to questions about his relationship status with Sports Illustrated Swimsuit model Ponton, who called 911 to report the crime.
This page was last edited on 5 June 2008, at 15:51 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply ...