Search results
Results from the WOW.Com Content Network
Satake (1966) reformulated the Ramanujan–Petersson conjecture in terms of automorphic representations for GL(2) as saying that the local components of automorphic representations lie in the principal series, and suggested this condition as a generalization of the Ramanujan–Petersson conjecture to automorphic forms on other groups. Another ...
Download as PDF; Printable version; In other projects ... (1917) and the third one, called the Ramanujan conjecture, ... Ramanujan's L-function is defined by = ...
See Winnie Li's survey on Ramanujan's conjecture and other aspects of number theory relevant to these results. [ 5 ] Lubotzky , Phillips and Sarnak [ 2 ] and independently Margulis [ 6 ] showed how to construct an infinite family of ( p + 1 ) {\displaystyle (p+1)} -regular Ramanujan graphs, whenever p {\displaystyle p} is a prime number and p ...
Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences. For instance, whenever the decimal representation of n ends in the digit 4 or 9, the number of partitions of n will be divisible by 5.
Lafforgue's theorem implies the Ramanujan–Petersson conjecture that if an automorphic form for GL n (F) has central character of finite order, then the corresponding Hecke eigenvalues at every unramified place have absolute value 1.
This page was last edited on 5 June 2008, at 15:51 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply ...
In mathematics, Ramanujan's congruences are the congruences for the partition function p(n) discovered by Srinivasa Ramanujan: (+) (), (+) (), (+) ().In plain words, e.g., the first congruence means that If a number is 4 more than a multiple of 5, i.e. it is in the sequence
The initial idea is usually attributed to the work of Hardy with Srinivasa Ramanujan a few years earlier, in 1916 and 1917, on the asymptotics of the partition function.It was taken up by many other researchers, including Harold Davenport and I. M. Vinogradov, who modified the formulation slightly (moving from complex analysis to exponential sums), without changing the broad lines.