Search results
Results from the WOW.Com Content Network
Then is called a pivotal quantity (or simply a pivot). Pivotal quantities are commonly used for normalization to allow data from different data sets to be compared. It is relatively easy to construct pivots for location and scale parameters: for the former we form differences so that location cancels, for the latter ratios so that scale cancels.
The pivotal method is based on a random variable that is a function of both the observations and the parameters but whose distribution does not depend on the parameter. Such random variables are called pivotal quantities. By using these, probability statements about the observations and parameters may be made in which the probabilities do not ...
A ancillary statistic is a specific case of a pivotal quantity that is computed only from the data and not from the parameters. They can be used to construct prediction intervals . They are also used in connection with Basu's theorem to prove independence between statistics.
Download as PDF; Printable version; ... the pivotal quantity ... 90% of the times that an upper threshold is calculated by this method from particular samples, this ...
A random variable that is a function of the random sample and of the unknown parameter, but whose probability distribution does not depend on the unknown parameter is called a pivotal quantity or pivot. Widely used pivots include the z-score, the chi square statistic and Student's t-value.
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
Robust statistical methods, of which the trimmed mean is a simple example, seek to outperform classical statistical methods in the presence of outliers, or, more generally, when underlying parametric assumptions are not quite correct. Whilst the trimmed mean performs well relative to the mean in this example, better robust estimates are available.