enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    For example, consider a book at rest on a table. The Earth's gravity pulls down upon the book. The "reaction" to that "action" is not the support force from the table holding up the book, but the gravitational pull of the book acting on the Earth. [note 6] Newton's third law relates to a more fundamental principle, the conservation of momentum.

  3. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]

  4. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    As one more example, consider the moment of inertia of a solid sphere of constant density about an axis through its center of mass. This is determined by summing the moments of inertia of the thin discs that can form the sphere whose centers are along the axis chosen for consideration.

  5. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    Examples of fictitious forces are the centrifugal force and the Coriolis force in rotating reference frames. To apply the Newtonian definition of an inertial frame, the understanding of separation between "fictitious" forces and "real" forces must be made clear. For example, consider a stationary object in an inertial frame.

  6. Talk:Sylvester's law of inertia - Wikipedia

    en.wikipedia.org/wiki/Talk:Sylvester's_law_of...

    According to Horn and Johnson Thm 4.5.8, Sylvester's law of inertia says two Hermitian matrices A and B are unitarily similar iff they have the same inertia. If I'm not mistakened, what is here is trivial-- eigenvalues don't change under similarity transforms, so of course the inertia doesn't change.

  7. Parallel axis theorem - Wikipedia

    en.wikipedia.org/wiki/Parallel_axis_theorem

    The parallel axis theorem, also known as Huygens–Steiner theorem, or just as Steiner's theorem, [1] named after Christiaan Huygens and Jakob Steiner, can be used to determine the moment of inertia or the second moment of area of a rigid body about any axis, given the body's moment of inertia about a parallel axis through the object's center of gravity and the perpendicular distance between ...

  8. Rotating reference frame - Wikipedia

    en.wikipedia.org/wiki/Rotating_reference_frame

    An everyday example of a rotating reference frame is the surface of the Earth. (This article considers only frames rotating about a fixed axis. For more general rotations, see Euler angles.) In the inertial frame of reference (upper part of the picture), the black ball moves in a straight line.

  9. Bucket argument - Wikipedia

    en.wikipedia.org/wiki/Bucket_argument

    These arguments, and a discussion of the distinctions between absolute and relative time, space, place and motion, appear in a scholium at the end of Definitions sections in Book I of Newton's work, The Mathematical Principles of Natural Philosophy (1687) (not to be confused with General Scholium at the end of Book III), which established the foundations of classical mechanics and introduced ...