Search results
Results from the WOW.Com Content Network
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...
Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. [8] For higher degrees, the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree five) are sometimes used. The names for the degrees may be applied to the ...
Degree: The maximum exponents among the monomials. Factor: An expression being multiplied. Linear factor: A factor of degree one. Coefficient: An expression multiplying one of the monomials of the polynomial. Root (or zero) of a polynomial: Given a polynomial p(x), the x values that satisfy p(x) = 0 are called roots (or zeroes) of the polynomial p.
For any integer N > i + j, based on the N zeros of U N ... For any given n ≥ 1, among the polynomials of degree n with leading coefficient 1 (monic polynomials): () ...
So, except for very low degrees, root finding of polynomials consists of finding approximations of the roots. By the fundamental theorem of algebra, a polynomial of degree n has exactly n real or complex roots counting multiplicities. It follows that the problem of root finding for polynomials may be split in three different subproblems;
The n th-order Hermite polynomial is a polynomial of degree n. The probabilist's version He n has leading coefficient 1, while the physicist's version H n has leading coefficient 2 n . Symmetry
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
For polynomials with real or complex coefficients, it is not possible to express a lower bound of the root separation in terms of the degree and the absolute values of the coefficients only, because a small change on a single coefficient transforms a polynomial with multiple roots into a square-free polynomial with a small root separation, and ...