Search results
Results from the WOW.Com Content Network
the inductance of a solenoid follows as =. A table of inductance for short solenoids of various diameter to length ratios has been calculated by Dellinger, Whittmore, and Ould. [18] This, and the inductance of more complicated shapes, can be derived from Maxwell's equations. For rigid air-core coils, inductance is a function of coil geometry ...
When this is combined with the definition of inductance =, it follows that the inductance of a solenoid is given by: =. Therefore, for air-core coils, inductance is a function of coil geometry and number of turns, and is independent of current.
The starter solenoid receives a large electric current from the car battery and a small electric current from the ignition switch. When the ignition switch is turned on (i.e. when the key is turned to start the car), the small electric current forces the starter solenoid to close a pair of heavy contacts, thus relaying the large electric ...
A solenoid The longitudinal cross section of a solenoid with a constant electrical current running through it. The magnetic field lines are indicated, with their direction shown by arrows. The magnetic flux corresponds to the 'density of field lines'. The magnetic flux is thus densest in the middle of the solenoid, and weakest outside of it.
Alternating electric current flows through the solenoid on the left, producing a changing magnetic field. This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. The most widespread version of Faraday's law states:
This induced current creates an auxiliary magnetic flux which is 90 degrees out of phase from the magnetic flux created by the primary coil. [ 1 ] Frager spire or shading coil's purpose is to provide sizeable phase-shifted magnetic field (in blue) to keep the contactor on when the main coil flux (in red) passes through zero, avoiding unwanted ...
However, the current change in the primary is much more abrupt when the interrupter 'breaks'. When the contacts close, the current builds up slowly in the primary because the supply voltage has a limited ability to force current through the coil's inductance. In contrast, when the interrupter contacts open, the current falls to zero suddenly.
An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field: =