Search results
Results from the WOW.Com Content Network
Overview of eukaryotic messenger RNA (mRNA) translation Translation of mRNA and ribosomal protein synthesis Initiation and elongation stages of translation involving RNA nucleobases, the ribosome, transfer RNA, and amino acids The three phases of translation: (1) in initiation, the small ribosomal subunit binds to the RNA strand and the initiator tRNA–amino acid complex binds to the start ...
Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.
Elongation is the most rapid step in translation. [3] In bacteria, it proceeds at a rate of 15 to 20 amino acids added per second (about 45-60 nucleotides per second). [citation needed] In eukaryotes the rate is about two amino acids per second (about 6 nucleotides read per second).
Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...
The eIF2 alpha subunit is characterized by an OB-fold domain and two beta strands. This subunit helps to regulate translation, as it becomes phosphorylated to inhibit protein synthesis. [2] The eIF4F complex supports the cap-dependent translation initiation process and is composed of the initiation factors eIF4A, eIF4E, and eIF4G.
Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences. [1] Protein synthesis can be divided broadly into two phases: transcription and translation. During transcription, a section of DNA encoding a protein, known as a gene, is converted into a molecule called messenger RNA (mRNA).
A bacterial initiation factor (IF) is a protein that stabilizes the initiation complex for polypeptide translation. Translation initiation is essential to protein synthesis and regulates mRNA translation fidelity and efficiency in bacteria. [1] The 30S ribosomal subunit, initiator tRNA, and mRNA form an initiation complex for elongation. [2]
Protein metabolism denotes the various biochemical processes responsible for the synthesis of proteins and amino acids (anabolism), and the breakdown of proteins by catabolism. The steps of protein synthesis include transcription, translation, and post translational modifications.