Search results
Results from the WOW.Com Content Network
Doppler shift of the direct path can be estimated by the following formula: [22], = where is the speed of the mobile station, is the wavelength of the carrier, is the elevation angle of the satellite and is the driving direction with respect to the satellite.
If we consider the angles relative to the frame of the source, then = and the equation reduces to Equation 7, Einstein's 1905 formula for the Doppler effect. If we consider the angles relative to the frame of the receiver, then v r = 0 {\displaystyle v_{r}=0} and the equation reduces to Equation 6 , the alternative form of the Doppler shift ...
Doppler Effect: Change of wavelength and frequency caused by motion of the source. The formula for radar Doppler shift is the same as that for reflection of light by a moving mirror. [3] There is no need to invoke Albert Einstein's theory of special relativity, because all observations are made in the same frame of reference. [4]
A particular case is the thermal Doppler broadening due to the thermal motion of the particles. Then, the broadening depends only on the frequency of the spectral line, the mass of the emitting particles, and their temperature , and therefore can be used for inferring the temperature of an emitting (or absorbing) body being spectroscopically ...
The Doppler parameters of Lyman-alpha forest absorption lines are in the range 10–100 km s −1, with a median value around = that decrease with redshift (Kim et al. 1997). Analyses of the HST / COS dataset of low-redshift quasars gives a median b {\displaystyle b} parameter of around 33 k m s − 1 {\displaystyle 33\ \mathrm {km\ s} ^{-1 ...
A simple calculation reveals that a radar echo will take approximately 10.8 μs to return from a target 1 statute mile away (counting from the leading edge of the transmitter pulse (T 0), (sometimes known as transmitter main bang)). For convenience, these figures may also be expressed as 1 nautical mile in 12.4 μs or 1 kilometre in 6.7 μs.
Doppler radio direction finding, also known as Doppler DF, is a radio direction-finding method that generates accurate bearing information with minimal electronics. It is best suited to applications in VHF and UHF frequencies and takes only a short time to indicate a direction. This makes it suitable for measuring the location of the vast ...
Doppler tracking.The Doppler effect allows the measurement of the distance between a transmitter from space and a receiver on the ground by observing how the frequency received from the transmitter changes as it approaches the transmitter, is overhead, and moves away.