Search results
Results from the WOW.Com Content Network
This was designed by the National Security Agency (NSA) to be part of the Digital Signature Algorithm. Cryptographic weaknesses were discovered in SHA-1, and the standard was no longer approved for most cryptographic uses after 2010. SHA-2: A family of two similar hash functions, with different block sizes, known as SHA-256 and SHA-512. They ...
SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. [3] [4] They are built using the Merkle–Damgård construction, from a one-way compression function itself built using the Davies–Meyer structure from a specialized block cipher.
SHA-2 basically consists of two hash algorithms: SHA-256 and SHA-512. SHA-224 is a variant of SHA-256 with different starting values and truncated output. SHA-384 and the lesser-known SHA-512/224 and SHA-512/256 are all variants of SHA-512. SHA-512 is more secure than SHA-256 and is commonly faster than SHA-256 on 64-bit machines such as AMD64.
SHA-256 & RIPEMD160: C# [38] dBFT: China based cryptocurrency, formerly ANT Shares and ANT Coins. The names were changed in 2017 to NEO and GAS. 2014 MazaCoin: MZC BTC Oyate Initiative SHA-256d: C++ [39] PoW: The underlying software is derived from that of another cryptocurrency, ZetaCoin. 2014 Monero: XMR Monero Core Team RandomX C++ [40] PoW
Scrypt is used in many cryptocurrencies as a proof-of-work algorithm (more precisely, as the hash function in the Hashcash proof-of-work algorithm). It was first implemented for Tenebrix (released in September 2011) and served as the basis for Litecoin and Dogecoin , which also adopted its scrypt algorithm.
Algorithm Output size (bits) Internal state size [note 1] Block size Length size Word size Rounds; BLAKE2b: 512 512 1024 128 [note 2] 64 12 BLAKE2s: 256 256 512 64 [note 3] 32 10 BLAKE3: Unlimited [note 4] 256 [note 5] 512 64 32 7 GOST: 256 256 256 256 32 32 HAVAL: 256/224/192/160/128 256 1024 64 32 3/4/5 MD2: 128 384 128 – 32 18 MD4: 128 128 ...
BLAKE3 is a single algorithm with many desirable features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE and BLAKE2, which are algorithm families with multiple variants. BLAKE3 has a binary tree structure, so it supports a practically unlimited degree of parallelism (both SIMD and multithreading) given long enough input.
SHA-256: 256 bits Merkle–Damgård construction: SHA-384: 384 bits Merkle–Damgård construction: SHA-512: 512 bits Merkle–Damgård construction: SHA-3 (subset of Keccak) arbitrary sponge function: Skein: arbitrary Unique Block Iteration: Snefru: 128 or 256 bits hash Spectral Hash: 512 bits wide-pipe Merkle–Damgård construction Streebog ...