Search results
Results from the WOW.Com Content Network
In genetics, the coefficient of coincidence (c.o.c.) is a measure of interference in the formation of chromosomal crossovers during meiosis. It is generally the case that, if there is a crossover at one spot on a chromosome, this decreases the likelihood of a crossover in a nearby spot. [1] This is called interference.
Crossover interference is the term used to refer to the non-random placement of crossovers with respect to each other during meiosis.The term is attributed to Hermann Joseph Muller, who observed that one crossover "interferes with the coincident occurrence of another crossing over in the same pair of chromosomes, and I have accordingly termed this phenomenon ‘interference’."
The Kosambi mapping function was introduced to account for the impact played by crossover interference on recombination frequency. It introduces a parameter C, representing the coefficient of coincidence, and sets it equal to 2r. For loci which are strongly linked, interference is strong; otherwise, interference decreases towards zero. [5]
Chromosomal crossover, or crossing over, is the exchange of genetic material during sexual reproduction between two homologous chromosomes' non-sister chromatids that results in recombinant chromosomes. It is one of the final phases of genetic recombination, which occurs in the pachytene stage of prophase I of meiosis during a process called ...
Higher order coherence or n-th order coherence (for any positive integer n>1) extends the concept of coherence to quantum optics and coincidence experiments. [1] It is used to differentiate between optics experiments that require a quantum mechanical description from those for which classical fields suffice.
In population genetics, the Hill–Robertson effect, or Hill–Robertson interference, is a phenomenon first identified by Bill Hill and Alan Robertson in 1966. [1] It provides an explanation as to why there may be an evolutionary advantage to genetic recombination .
The first notable use of the coincidence method was conducted in 1924 by the Bothe–Geiger coincidence experiment. [ 1 ] The higher the rate of interactions or reaction products that can be measured in coincidence, the harder it is to justify such an event occurred from background flux and the higher the experiment's efficiency.
In their experiment, Luria and Delbrück inoculated a small number of bacteria (Escherichia coli) into separate culture tubes. After a period of growth, they plated equal volumes of these separate cultures onto agar containing the T1 phage (virus). If resistance to the virus in bacteria were caused by an induced activation in bacteria i.e. if ...