Search results
Results from the WOW.Com Content Network
Iron overload (also known as haemochromatosis or hemochromatosis) is the abnormal and increased accumulation of total iron in the body, leading to organ damage. [1] The primary mechanism of organ damage is oxidative stress, as elevated intracellular iron levels increase free radical formation via the Fenton reaction.
There are five types of hereditary hemochromatosis: type 1, 2 (2A, 2B), 3, 4 [9] and 5, [10] all caused by mutated genes. Hereditary hemochromatosis type 1 is the most frequent, and uniquely related to the HFE gene. It is most common among those of Northern European ancestry, in particular those of Celtic descent. [11]
Hfe is the mouse equivalent of the human hemochromatosis gene HFE. The protein encoded by HFE is Hfe. Mice homozygous (two abnormal gene copies) for a targeted knockout of all six transcribed Hfe exons are designated Hfe −/−. [ 29 ]
Treatment for hemochromatosis type 3 may include reducing iron levels by removing blood (phlebotomy), iron chelation therapy, diet changes, and treatment for complications of the disease. The purpose of the treatment is to reduce the amount of iron in the body to normal levels, prevent or delay organ damage from excess iron, and maintain normal ...
Hemochromatosis type 4 is a hereditary iron overload disorder that affects ferroportin, an iron transport protein needed to export iron from cells into circulation. [1] Although the disease is rare, it is found throughout the world and affects people from various ethnic groups.
Phlebotomy, the removal of blood from the body, is the main treatment for juvenile hemochromatosis. One unit of blood, the amount typically given during blood donation, is typically removed per session, and it is generally recommended that this be done once weekly until acceptable levels of iron are in the blood, which may take years. [4]
In hemochromatosis, this entails frequent phlebotomy granulomatosis, immune suppression is required. Limiting blood transfusions and institution of iron chelation therapy when iron overload is detected are important when managing sickle-cell anemia and other chronic hemolytic anemias.
Hepcidin is a protein that in humans is encoded by the HAMP gene. Hepcidin is a key regulator of the entry of iron into the circulation in mammals. [6]During conditions in which the hepcidin level is abnormally high, such as inflammation, serum iron falls due to iron trapping within macrophages and liver cells and decreased gut iron absorption.