enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    The theorem may also be proven using trigonometry: Let O = (0, 0), A = (−1, 0), and C = (1, 0). Then B is a point on the unit circle (cos θ, sin θ). We will show that ABC forms a right angle by proving that AB and BC are perpendicular — that is, the product of their slopes is equal to −1. We calculate the slopes for AB and BC:

  3. Conway circle theorem - Wikipedia

    en.wikipedia.org/wiki/Conway_circle_theorem

    Conway's circle theorem as a special case of the generalisation, called "side divider theorem" (Villiers) or "windscreen wiper theorem" (Polster)) Conway's circle is a special case of a more general circle for a triangle that can be obtained as follows: Given any ABC with an arbitrary point P on line AB.

  4. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The integral of ds over the whole circle is just the arc length, which is its circumference, so this shows that the area A enclosed by the circle is equal to / times the circumference of the circle. Another proof that uses triangles considers the area enclosed by a circle to be made up of an infinite number of triangles (i.e. the triangles each ...

  5. Inscribed angle - Wikipedia

    en.wikipedia.org/wiki/Inscribed_angle

    As a consequence of the theorem, opposite angles of cyclic quadrilaterals sum to 180°; conversely, any quadrilateral for which this is true can be inscribed in a circle. As another example, the inscribed angle theorem is the basis for several theorems related to the power of a point with respect to a circle. Further, it allows one to prove ...

  6. Circle theorem - Wikipedia

    en.wikipedia.org/wiki/Circle_theorem

    Circle theorem may refer to: Any of many theorems related to the circle; often taught as a group in GCSE mathematics. These include: Inscribed angle theorem. Thales' theorem, if A, B and C are points on a circle where the line AC is a diameter of the circle, then the angle ∠ABC is a right angle. Alternate segment theorem. Ptolemy's theorem.

  7. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Steiner used the power of a point for proofs of several statements on circles, for example: Determination of a circle, that intersects four circles by the same angle. [2] Solving the Problem of Apollonius; Construction of the Malfatti circles: [3] For a given triangle determine three circles, which touch each other and two sides of the triangle ...

  8. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    A short elementary proof of Pascal's theorem in the case of a circle was found by van Yzeren (1993), based on the proof in (Guggenheimer 1967). This proof proves the theorem for circle and then generalizes it to conics. A short elementary computational proof in the case of the real projective plane was found by Stefanovic (2010).

  9. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    Tangent lines to circles form the subject of several theorems, and play an important role in many geometrical constructions and proofs. Since the tangent line to a circle at a point P is perpendicular to the radius to that point, theorems involving tangent lines often involve radial lines and orthogonal circles.