enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not.

  3. Spiral of Theodorus - Wikipedia

    en.wikipedia.org/wiki/Spiral_of_Theodorus

    The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.

  4. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).

  5. Pythagoreanism - Wikipedia

    en.wikipedia.org/wiki/Pythagoreanism

    Early-Pythagorean philosophers proved simple geometrical theorems, including "the sum of the angles of a triangle equals two right angles". Pythagoreans also came up with three of the five platonic solids : the tetrahedron , the cube and the dodecahedron .

  6. Pythagorean prime - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_prime

    The Pythagorean prime 5 and its square root are both hypotenuses of right triangles with integer legs. The formulas show how to transform any right triangle with integer legs into another right triangle with integer legs whose hypotenuse is the square of the first triangle's hypotenuse.

  7. Tetractys - Wikipedia

    en.wikipedia.org/wiki/Tetractys

    The tetractys. The tetractys (Greek: τετρακτύς), or tetrad, [1] or the tetractys of the decad [2] is a triangular figure consisting of ten points arranged in four rows: one, two, three, and four points in each row, which is the geometrical representation of the fourth triangular number.

  8. Gauss's Pythagorean right triangle proposal - Wikipedia

    en.wikipedia.org/wiki/Gauss's_Pythagorean_right...

    Gauss's Pythagorean right triangle proposal is an idea attributed to Carl Friedrich Gauss for a method to signal extraterrestrial beings by constructing an immense right triangle and three squares on the surface of the Earth. The shapes would be a symbolic representation of the Pythagorean theorem, large enough to be seen from the Moon or Mars.

  9. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    There is a method to construct all Pythagorean triples that contain a given positive integer x as one of the legs of the right-angled triangle associated with the triple. It means finding all right triangles whose sides have integer measures, with one leg predetermined as a given cathetus. [13] The formulas read as follows.