enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    Hyperbolic space, developed independently by Nikolai Lobachevsky, János Bolyai and Carl Friedrich Gauss, is a geometric space analogous to Euclidean space, but such that Euclid's parallel postulate is no longer assumed to hold. Instead, the parallel postulate is replaced by the following alternative (in two dimensions):

  3. Hyperbolic trajectory - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_trajectory

    The blue path in this image is an example of a hyperbolic trajectory. A hyperbolic trajectory is depicted in the bottom-right quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the hyperbolic trajectory is shown in red. The height of the kinetic energy decreases ...

  4. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Because Euclidean, hyperbolic and elliptic geometry are all consistent, the question arises: which is the real geometry of space, and if it is hyperbolic or elliptic, what is its curvature? Lobachevsky had already tried to measure the curvature of the universe by measuring the parallax of Sirius and treating Sirius as the ideal point of an ...

  5. Hyperbolic motion - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_motion

    Hyperbolic motions are often taken from inversive geometry: these are mappings composed of reflections in a line or a circle (or in a hyperplane or a hypersphere for hyperbolic spaces of more than two dimensions). To distinguish the hyperbolic motions, a particular line or circle is taken as the absolute.

  6. Rindler coordinates - Wikipedia

    en.wikipedia.org/wiki/Rindler_coordinates

    These hyperbolic coordinates can be separated into two main variants depending on the accelerated observer's position: If the observer is located at time T = 0 at position X = 1/α (with α as the constant proper acceleration measured by a comoving accelerometer), then the hyperbolic coordinates are often called Rindler coordinates with the ...

  7. Hyperboloid model - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_model

    Hyperbolic space is embedded isometrically in Minkowski space; that is, the hyperbolic distance function is inherited from Minkowski space, analogous to the way spherical distance is inherited from Euclidean distance when the n-sphere is embedded in (n+1)-dimensional Euclidean space. Other models of hyperbolic space can be thought of as map ...

  8. Hyperbolic manifold - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_manifold

    For > the hyperbolic structure on a finite volume hyperbolic -manifold is unique by Mostow rigidity and so geometric invariants are in fact topological invariants. One of these geometric invariants used as a topological invariant is the hyperbolic volume of a knot or link complement, which can allow us to distinguish two knots from each other ...

  9. Hilbert metric - Wikipedia

    en.wikipedia.org/wiki/Hilbert_metric

    It was introduced by David Hilbert as a generalization of Cayley's formula for the distance in the Cayley–Klein model of hyperbolic geometry, where the convex set is the n-dimensional open unit ball. Hilbert's metric has been applied to Perron–Frobenius theory and to constructing Gromov hyperbolic spaces.