Search results
Results from the WOW.Com Content Network
In computer programming, foreach loop (or for-each loop) is a control flow statement for traversing items in a collection. foreach is usually used in place of a standard for loop statement.
Maple has two forms of for-loop, one for iterating over a range of values, and the other for iterating over the contents of a container. The value range form is as follows: for i from f by b to t while w do # loop body od; All parts except do and od are optional. The for I part, if present, must come first.
In computer science, loop fission (or loop distribution) is a compiler optimization in which a loop is broken into multiple loops over the same index range with each taking only a part of the original loop's body. [1] [2] The goal is to break down a large loop body into smaller ones to achieve better utilization of locality of reference.
If-then-else flow diagram A nested if–then–else flow diagram. In computer science, conditionals (that is, conditional statements, conditional expressions and conditional constructs) are programming language constructs that perform different computations or actions or return different values depending on the value of a Boolean expression, called a condition.
A conditional loop has the potential to become an infinite loop when nothing in the loop's body can affect the outcome of the loop's conditional statement. However, infinite loops can sometimes be used purposely, often with an exit from the loop built into the loop implementation for every computer language , but many share the same basic ...
In combinatory logic for computer science, a fixed-point combinator (or fixpoint combinator), [1]: p.26 is a higher-order function (i.e. a function which takes a function as argument) that returns some fixed point (a value that is mapped to itself) of its argument function, if one exists.
Each iteration of the loop takes the value from the current index of L, and increments it by 10. If statement S1 takes T time to execute, then the loop takes time n * T to execute sequentially, ignoring time taken by loop constructs. Now, consider a system with p processors where p > n.
The boundaries of the polytopes, the data dependencies, and the transformations are often described using systems of constraints, and this approach is often referred to as a constraint-based approach to loop optimization. For example, a single statement within an outer loop ' for i := 0 to n ' and an inner loop ' for j := 0 to i+2 ' is executed ...