Search results
Results from the WOW.Com Content Network
Plants are capable of producing and synthesizing diverse groups of organic compounds and are divided into two major groups: primary and secondary metabolites. [9] Secondary metabolites are metabolic intermediates or products which are not essential to growth and life of the producing plants but rather required for interaction of plants with their environment and produced in response to stress.
Plants synthesize certain compounds called secondary metabolites which are not naturally produced by humans but can play vital roles in protection or destruction of human health. One such group of metabolites is phytoestrogens , found in nuts, oilseeds, soy, and other foods. [ 17 ]
Secondary metabolism (also called specialized metabolism) is a term for pathways and small molecule products of metabolism that are involved in ecological interactions, but are not absolutely required for the survival of the organism. These molecules are sometimes produced by specialized cells, such as laticifers in plants. [1]
Phytochemistry is the study of phytochemicals, which are chemicals derived from plants.Phytochemists strive to describe the structures of the large number of secondary metabolites found in plants, the functions of these compounds in human and plant biology, and the biosynthesis of these compounds.
Phytochemicals (from Greek phyto, meaning "plant") are chemicals produced by plants through primary or secondary metabolism. [2] [3] They generally have biological activity in the plant host and play a role in plant growth or defense against competitors, pathogens, or predators. [2]
Molecular structure of the flavone backbone (2-phenyl-1,4-benzopyrone) Isoflavan structure Neoflavonoids structure. Flavonoids (or bioflavonoids; from the Latin word flavus, meaning yellow, their color in nature) are a class of polyphenolic secondary metabolites found in plants, and thus commonly consumed in the diets of humans.
They are the largest class of plant secondary metabolites, representing about 60% of known natural products. [3] Many terpenoids have substantial pharmacological bioactivity and are therefore of interest to medicinal chemists. [4] Plant terpenoids are used for their aromatic qualities and play a role in traditional herbal remedies.
A secondary metabolite is not directly involved in those processes, but usually has important ecological function. Secondary metabolites may include pigments, antibiotics or waste products derived from partially metabolized xenobiotics. The study of the metabolome is called metabolomics.