Search results
Results from the WOW.Com Content Network
For instance, in the latter, Simpson's 3rd rule is used to find the volume between two co-ordinates. To calculate the entire area / volume, Simpson's first rule is used. [7] Simpson's rules are used by a ship's officers to check that the area under the ship's GZ curve complies with IMO stability criteria.
The blue area above the x-axis may be specified as positive area, while the yellow area below the x-axis is the negative area. The integral of a real function can be imagined as the signed area between the x {\displaystyle x} -axis and the curve y = f ( x ) {\displaystyle y=f(x)} over an interval [ a , b ].
Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration.To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then ...
The arc length of a curve on the surface and the surface area can be found ... This perspective helps one calculate the angle between two curves on S intersecting at ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
Total variation distance is half the absolute area between the two curves: Half the shaded area above. In probability theory, the total variation distance is a distance measure for probability distributions.
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry, a circular segment or disk segment (symbol: ⌓) is a region of a disk [1] which is "cut off" from the rest of the disk by a straight line.
Given any curve c : (a, b) → S, one may consider the composition X ∘ c : (a, b) → ℝ 3. As a map between Euclidean spaces, it can be differentiated at any input value to get an element (X ∘ c)′(t) of ℝ 3. The orthogonal projection of this vector onto T c(t) S defines the covariant derivative ∇ c ′(t) X.