Search results
Results from the WOW.Com Content Network
Ignoring the influence of other Solar System bodies, Earth's orbit, also called Earth's revolution, is an ellipse with the Earth–Sun barycenter as one focus with a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun (relative to the size of the orbit).
Earth's rotation axis moves with respect to the fixed stars (inertial space); the components of this motion are precession and nutation. It also moves with respect to Earth's crust; this is called polar motion. Precession is a rotation of Earth's rotation axis, caused primarily by external torques from the gravity of the Sun, Moon and other bodies.
At the equator, the solar rotation period is 24.47 days. This is called the sidereal rotation period, and should not be confused with the synodic rotation period of 26.24 days, which is the time for a fixed feature on the Sun to rotate to the same apparent position as viewed from Earth (the Earth's orbital rotation is in the same direction as the Sun's rotation).
The Earth's rotation around its axis, and revolution around the Sun, evolve over time due to gravitational interactions with other bodies in the Solar System. The variations are complex, but a few cycles are dominant.
Copernicus removed Earth from the center of the universe, set the heavenly bodies in rotation around the Sun, and introduced Earth's daily rotation on its axis. [9] While Copernicus's work sparked the "Copernican Revolution", it did not mark its end.
While the sphericity of the Earth was widely recognized in Greco-Roman astronomy from at least the 4th century BC, [4] the Earth's daily rotation and yearly orbit around the Sun was never universally accepted until the Copernican Revolution.
For celestial objects in general, the orbital period is determined by a 360° revolution of one body around its primary, e.g. Earth around the Sun. Periods in astronomy are expressed in units of time, usually hours, days, or years. Its reciprocal is the orbital frequency, a kind of revolution frequency, in units of hertz.
The Earth is one of several planets revolving around a stationary sun in a determined order. The Earth has three motions: daily rotation, annual revolution, and annual tilting of its axis. Retrograde motion of the planets is explained by the Earth's motion. The distance from the Earth to the Sun is small compared to the distance from the Sun to ...