enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Gaussian_noise

    In signal processing theory, Gaussian noise, named after Carl Friedrich Gauss, is a kind of signal noise that has a probability density function (pdf) equal to that of the normal distribution (which is also known as the Gaussian distribution). [1] [2] In other words, the values that the noise can take are Gaussian-distributed. The probability ...

  3. Additive white Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Additive_white_Gaussian_noise

    Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics: Additive because it is added to any noise that might be intrinsic to the information system.

  4. Linear–quadratic–Gaussian control - Wikipedia

    en.wikipedia.org/wiki/Linear–quadratic...

    It concerns linear systems driven by additive white Gaussian noise. The problem is to determine an output feedback law that is optimal in the sense of minimizing the expected value of a quadratic cost criterion. Output measurements are assumed to be corrupted by Gaussian noise and the initial state, likewise, is assumed to be a Gaussian random ...

  5. Simulation noise - Wikipedia

    en.wikipedia.org/wiki/Simulation_noise

    Simulation noise is a function that creates a divergence-free vector field. This signal can be used in artistic simulations for the purpose of increasing the perception of extra detail. This signal can be used in artistic simulations for the purpose of increasing the perception of extra detail.

  6. Additive noise differential privacy mechanisms - Wikipedia

    en.wikipedia.org/wiki/Additive_noise...

    Analogous to Laplace mechanism, Gaussian mechanism adds noise drawn from a Gaussian distribution whose variance is calibrated according to the sensitivity and privacy parameters. For any δ ∈ ( 0 , 1 ) {\displaystyle \delta \in (0,1)} and ϵ ∈ ( 0 , 1 ) {\displaystyle \epsilon \in (0,1)} , the mechanism defined by:

  7. Total variation denoising - Wikipedia

    en.wikipedia.org/wiki/Total_variation_denoising

    The regularization parameter plays a critical role in the denoising process. When =, there is no smoothing and the result is the same as minimizing the sum of squares.As , however, the total variation term plays an increasingly strong role, which forces the result to have smaller total variation, at the expense of being less like the input (noisy) signal.

  8. Gaussian filter - Wikipedia

    en.wikipedia.org/wiki/Gaussian_filter

    Shape of the impulse response of a typical Gaussian filter. In electronics and signal processing, mainly in digital signal processing, a Gaussian filter is a filter whose impulse response is a Gaussian function (or an approximation to it, since a true Gaussian response would have infinite impulse response).

  9. Matched filter - Wikipedia

    en.wikipedia.org/wiki/Matched_filter

    If we model our noisy channel as an AWGN channel, white Gaussian noise is added to the signal. At the receiver end, for a Signal-to-noise ratio of 3 dB, this may look like: At the receiver end, for a Signal-to-noise ratio of 3 dB, this may look like: