Search results
Results from the WOW.Com Content Network
The standard atomic weight (A r °(Cu)) for copper is the average, weighted by their natural abundance, and then divided by the atomic mass constant m u. [ 1 ] The standard atomic weight of a chemical element (symbol A r °(E) for element "E") is the weighted arithmetic mean of the relative isotopic masses of all isotopes of that element ...
The atomic mass or relative isotopic mass are sometimes confused, or incorrectly used, as synonyms of relative atomic mass (also known as atomic weight) or the standard atomic weight (a particular variety of atomic weight, in the sense that it is standardized). However, as noted in the introduction, atomic mass is an absolute mass while all ...
[17] [18] For example, writing the standard atomic weight of hydrogen as [1.007 84, 1.008 11] shows that the atomic weight in any normal material will be greater than or equal to 1.007 84 and will be less than or equal to 1.008 11. [19]
Relative atomic mass is also frequently used as a synonym for standard atomic weight and these quantities may have overlapping values if the relative atomic mass used is that for an element from Earth under defined conditions. However, relative atomic mass (atomic weight) is still technically distinct from standard atomic weight because of its ...
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [2] or the conventional atomic weight.
When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses. [8] In the standard periodic table, the elements are listed in order of increasing atomic number.
There are two stable isotopes, 35 Cl (75.8%) and 37 Cl (24.2%), giving chlorine a standard atomic weight of 35.45. The longest-lived radioactive isotope is 36 Cl, which has a half-life of 301,000 years. All other isotopes have half-lives under 1 hour, many less than one second.
The atomic weight (A r) specifiers "standard atomic weight", "abridged atomic weight", "conventional atomic weight" are thus named and defined (numerical value as listed here) by IUPAC (CIAAW). [ 1 ] [ 2 ]