enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The derivative of ′ is the second derivative, denoted as ⁠ ″ ⁠, and the derivative of ″ is the third derivative, denoted as ⁠ ‴ ⁠. By continuing this process, if it exists, the ⁠ n {\displaystyle n} ⁠ th derivative is the derivative of the ⁠ ( n − 1 ) {\displaystyle (n-1)} ⁠ th derivative or the derivative of order ...

  3. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    A simple two-point estimation is to compute the slope of a nearby secant line through the points (x, f(x)) and (x + h, f(x + h)). [1] Choosing a small number h, h represents a small change in x, and it can be either positive or negative. The slope of this line is (+) ().

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero. In other words, the value of the constant function, y, will not change as the value of x increases or decreases.

  5. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}

  6. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    If f is a function, then its derivative evaluated at x is written ′ (). It first appeared in print in 1749. [3] Higher derivatives are indicated using additional prime marks, as in ″ for the second derivative and ‴ for the third derivative. The use of repeated prime marks eventually becomes unwieldy.

  7. Five-point stencil - Wikipedia

    en.wikipedia.org/wiki/Five-point_stencil

    An illustration of the five-point stencil in one and two dimensions (top, and bottom, respectively). In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors".

  8. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    In applied mathematics and mathematical analysis, a fractional derivative is a derivative of any arbitrary order, real or complex. Its first appearance is in a letter written to Guillaume de l'Hôpital by Gottfried Wilhelm Leibniz in 1695. [2] Around the same time, Leibniz wrote to one of the Bernoulli brothers describing the similarity between ...

  9. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    c should always be ⁠ f''(x 0) / 2 ⁠, and d should always be ⁠ f'''(x 0) / 3! ⁠. Using these coefficients gives the Taylor polynomial of f. The Taylor polynomial of degree d is the polynomial of degree d which best approximates f, and its coefficients can be found by a generalization of the above formulas.