Search results
Results from the WOW.Com Content Network
Below is an animation of the piston motion equations with the same values of rod length and crank radius as in the graphs above. Piston motion animation with the various half strokes from the graph above (using the same color code)
Diesel engines are used in aircraft, automobiles, power generation, diesel–electric locomotives, and both surface ships and submarines. The Diesel cycle is assumed to have constant pressure during the initial part of the combustion phase (to in the diagram, below). This is an idealized mathematical model: real physical diesels do have an ...
Free-piston engine used as a gas generator to drive a turbine. A free-piston engine is a linear, 'crankless' internal combustion engine, in which the piston motion is not controlled by a crankshaft but determined by the interaction of forces from the combustion chamber gases, a rebound device (e.g., a piston in a closed cylinder) and a load device (e.g. a gas compressor or a linear alternator).
The crankshaft configuration varies amongst opposed-engine designs. One layout has a flat/boxer engine at its center and adds an additional opposed-piston to each end so there are two pistons per cylinder on each side. An X engine is essentially two V engines joined by a common crankshaft. A majority of these were existing V-12 engines ...
A fundamental specification for such engines, it can be measured in two different ways. The simpler way is the static compression ratio: in a reciprocating engine, this is the ratio of the volume of the cylinder when the piston is at the bottom of its stroke to that volume when the piston is at the top of its stroke. [1]
The comparison of mean piston speed (black line) with real piston speed (color lines). Diagram shows one stroke from BDC to TDC. Revolution = 1.000 min-1, stroke = 88 mm. The connecting rod ratio l/r varies: 3 - red, 4 - green, 5,5 - blue. The mean piston speed is the average speed of the piston in a reciprocating engine.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A variation of the opposed-piston design is the free-piston engine, which was first patented in 1934. Free piston engines have no crankshaft, and the pistons are returned after each firing stroke by compression and expansion of air in a separate cylinder. Early applications were for use as an air compressor or as a gas generator for a gas turbine.