Search results
Results from the WOW.Com Content Network
The system designer assumes, in a Bayesian probability-driven fashion, that random noise with known probability distribution affects the evolution and observation of the state variables. Stochastic control aims to design the time path of the controlled variables that performs the desired control task with minimum cost, somehow defined, despite ...
In the 1990s and 2000s the theories of Schramm–Loewner evolution [272] and rough paths [142] were introduced and developed to study stochastic processes and other mathematical objects in probability theory, which respectively resulted in Fields Medals being awarded to Wendelin Werner [273] in 2008 and to Martin Hairer in 2014.
Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is ...
In numerical methods for stochastic differential equations, the Markov chain approximation method (MCAM) belongs to the several numerical (schemes) approaches used in stochastic control theory. Regrettably the simple adaptation of the deterministic schemes for matching up to stochastic models such as the Runge–Kutta method does not work at all.
In mathematics, the theory of stochastic processes is an important contribution to probability theory, [29] and continues to be an active topic of research for both theory and applications. [30] [31] [32] The word stochastic is used to describe other terms and objects in mathematics.
Conversely, in a stochastic model—usually called a "statistical model"—randomness is present, and variable states are not described by unique values, but rather by probability distributions. Deductive, inductive, or floating. A deductive model is a logical structure based on a theory. An inductive model arises from empirical findings and ...
In contrast, some authors have argued that randomization can only improve a deterministic algorithm if the deterministic algorithm was poorly designed in the first place. [21] Fred W. Glover [22] argues that reliance on random elements may prevent the development of more intelligent and better deterministic components. The way in which results ...
The probability that A reaches fixation is called fixation probability. For the simple Moran process this probability is x i = i / N . Since all individuals have the same fitness, they also have the same chance of becoming the ancestor of the whole population; this probability is 1 / N and thus the sum of all i probabilities ...