Search results
Results from the WOW.Com Content Network
In electrochemistry, the electrochemical potential of electrons (or any other species) is the total potential, including both the (internal, nonelectrical) chemical potential and the electric potential, and is by definition constant across a device in equilibrium, whereas the chemical potential of electrons is equal to the electrochemical ...
In a Fermi gas, the lowest occupied state is taken to have zero kinetic energy, whereas in a metal, the lowest occupied state is typically taken to mean the bottom of the conduction band. The term "Fermi energy" is often used to refer to a different yet closely related concept, the Fermi level (also called electrochemical potential).
The phrase "chemical potential" sometimes means "total chemical potential", but that is not universal. [13] In some fields, in particular electrochemistry, semiconductor physics, and solid-state physics, the term "chemical potential" means internal chemical potential, while the term electrochemical potential is used to mean total chemical ...
Therefore, V A − V B, the observed difference in voltage between two points, A and B, in an electronic circuit is exactly related to the corresponding chemical potential difference, μ A − μ B, in Fermi level by the formula [5] = where −e is the electron charge.
When a voltmeter is connected between two different types of metal, it measures the potential difference corrected for the different atomic environments. [6] The quantity measured by a voltmeter is called electrochemical potential or fermi level , while the pure unadjusted electric potential, V , is sometimes called the Galvani potential , ϕ .
When a chemical reaction is driven by an electrical potential difference, as in electrolysis, or if a potential difference results from a chemical reaction as in an electric battery or fuel cell, it is called an electrochemical reaction. Unlike in other chemical reactions, in electrochemical reactions electrons are not transferred directly ...
The magnitude of this potential difference is often expressed as a difference in Fermi levels in the two solids when they are at charge neutrality, where the Fermi level (a name for the chemical potential of an electron system [44] [45]) describes the energy necessary to remove an electron from the body to some common point (such as ground). [46]
Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. [1] An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus.