Ads
related to: fractional exponents variables
Search results
Results from the WOW.Com Content Network
In 1748, Leonhard Euler introduced variable exponents, and, implicitly, non-integer exponents by writing: Consider exponentials or powers in which the exponent itself is a variable. It is clear that quantities of this kind are not algebraic functions, since in those the exponents must be constant. [18]
An irrational fraction is one that contains the variable under a fractional exponent. [12] An example of an irrational fraction is / / /. The process of transforming an irrational fraction to a rational fraction is known as rationalization.
The time-space fractional diffusion governing equation can be written as = (). A simple extension of the fractional derivative is the variable-order fractional derivative, α and β are changed into α(x, t) and β(x, t). Its applications in anomalous diffusion modeling can be found in the reference.
where () = [] denotes the fractional part of x and [] is the []-iterated function of the function . The proof is that the second through fourth conditions trivially imply that f is a linear function on [−1, 0] .
[17] [18] For example, the fraction 1/(x 2 + 1) is not a polynomial, and it cannot be written as a finite sum of powers of the variable x. For polynomials in one variable, there is a notion of Euclidean division of polynomials , generalizing the Euclidean division of integers.
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
An irrational fraction is one that is not rational, as, for example, one that contains the variable under a fractional exponent or root, as in + . The terminology used to describe algebraic fractions is similar to that used for ordinary fractions.
If K is a field (such as the complex numbers), a Puiseux series with coefficients in K is an expression of the form = = + / where is a positive integer and is an integer. In other words, Puiseux series differ from Laurent series in that they allow for fractional exponents of the indeterminate, as long as these fractional exponents have bounded denominator (here n).
Ads
related to: fractional exponents variables