enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partial regression plot - Wikipedia

    en.wikipedia.org/wiki/Partial_regression_plot

    The residuals from the least squares linear fit to this plot are identical to the residuals from the least squares fit of the original model (Y against all the independent variables including Xi). The influences of individual data values on the estimation of a coefficient are easy to see in this plot.

  3. Partial residual plot - Wikipedia

    en.wikipedia.org/wiki/Partial_residual_plot

    Residuals = residuals from the full model, ^ = regression coefficient from the i-th independent variable in the full model, X i = the i-th independent variable. Partial residual plots are widely discussed in the regression diagnostics literature (e.g., see the References section below).

  4. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    An illustrative plot of a fit to data (green curve in top panel, data in red) plus a plot of residuals: red points in bottom plot. Dashed curve in bottom panel is a straight line fit to the residuals. If the functional form is correct then there should be little or no trend to the residuals - as seen here.

  5. DFFITS - Wikipedia

    en.wikipedia.org/wiki/DFFITS

    In statistics, DFFIT and DFFITS ("difference in fit(s)") are diagnostics meant to show how influential a point is in a linear regression, first proposed in 1980. [ 1 ] DFFIT is the change in the predicted value for a point, obtained when that point is left out of the regression:

  6. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    Thus to compare residuals at different inputs, one needs to adjust the residuals by the expected variability of residuals, which is called studentizing. This is particularly important in the case of detecting outliers, where the case in question is somehow different from the others in a dataset. For example, a large residual may be expected in ...

  7. Robust regression - Wikipedia

    en.wikipedia.org/wiki/Robust_regression

    Another consequence of the inefficiency of the ordinary least squares fit is that several outliers are masked because the estimate of residual scale is inflated; the scaled residuals are pushed closer to zero than when a more appropriate estimate of scale is used. The plots of the scaled residuals from the two models appear below.

  8. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    Normal probability plots are made of raw data, residuals from model fits, and estimated parameters. A normal probability plot. In a normal probability plot (also called a "normal plot"), the sorted data are plotted vs. values selected to make the resulting image look close to a straight line if the data are approximately normally distributed.

  9. PRESS statistic - Wikipedia

    en.wikipedia.org/wiki/PRESS_statistic

    Models that are over-parameterised (over-fitted) would tend to give small residuals for observations included in the model-fitting but large residuals for observations that are excluded. The PRESS statistic has been extensively used in lazy learning and locally linear learning to speed-up the assessment and the selection of the neighbourhood size.