Search results
Results from the WOW.Com Content Network
Since the flux is defined as an integral of the electric field, this expression of Gauss's law is called the integral form. A tiny Gauss's box whose sides are perpendicular to a conductor's surface is used to find the local surface charge once the electric potential and the electric field are calculated by solving Laplace's equation.
Advanced. Specialized. Miscellanea. v. t. e. In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, [1] is a theorem relating the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed. More precisely, the divergence theorem states that the surface ...
Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a ...
A fluxion is the instantaneous rate of change, or gradient, of a fluent (a time-varying quantity, or function) at a given point. [1] Fluxions were introduced by Isaac Newton to describe his form of a time derivative (a derivative with respect to time). Newton introduced the concept in 1665 and detailed them in his mathematical treatise, Method ...
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to normal n). F•dS is the component of flux passing through the surface, multiplied by the area of the surface (see dot product). For this reason flux represents physically a flow per unit area.
Fluid dynamics. In fluid dynamics, the continuity equation states that the rate at which mass enters a system is equal to the rate at which mass leaves the system plus the accumulation of mass within the system. [1][2] The differential form of the continuity equation is: [1] where. u is the flow velocity vector field.