Search results
Results from the WOW.Com Content Network
Incidence is usually more useful than prevalence in understanding the disease etiology: for example, if the incidence rate of a disease in a population increases, then there is a risk factor that promotes the incidence. For example, consider a disease that takes a long time to cure and was widespread in 2002 but dissipated in 2003.
For example, if the control group, using no treatment at all, had their own base rate of 1/20 recoveries within 1 day and a treatment had a 1/100 base rate of recovery within 1 day, we see that the treatment actively decreases the recovery. The base rate is an important concept in statistical inference, particularly in Bayesian statistics. [2]
An example of the base rate fallacy is the false positive paradox (also known as accuracy paradox).This paradox describes situations where there are more false positive test results than true positives (this means the classifier has a low precision).
An example would be all the people in a city during a specific time period. The constant K is assigned a value of 100 to represent a percentage. An example would be to find the percentage of people in a city who are infected with HIV: 6,000 cases in March divided by the population of a city (one million) multiplied by the constant ( K ) would ...
A relatively simple situation is estimation of a proportion. It is a fundamental aspect of statistical analysis, particularly when gauging the prevalence of a specific characteristic within a population. For example, we may wish to estimate the proportion of residents in a community who are at least 65 years old.
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
The notable unsolved problems in statistics are generally of a different flavor; according to John Tukey, [1] "difficulties in identifying problems have delayed statistics far more than difficulties in solving problems." A list of "one or two open problems" (in fact 22 of them) was given by David Cox. [2]
In statistics a population proportion, generally denoted by or the Greek letter, [1] is a parameter that describes a percentage value associated with a population. A census can be conducted to determine the actual value of a population parameter, but often a census is not practical due to its costs and time consumption.