Search results
Results from the WOW.Com Content Network
Supercritical airfoils feature four main benefits: they have a higher drag-divergence Mach number, [21] they develop shock waves farther aft than traditional airfoils, [22] they greatly reduce shock-induced boundary layer separation, and their geometry allows more efficient wing design (e.g., a thicker wing and/or reduced wing sweep, each of which may allow a lighter wing).
After World War II, NACA research began to focus on near-sonic and low-supersonic airflow.After considering the sudden drag increase which a wing-fuselage combination experiences at somewhere around 500 mph (800 km/h), Whitcomb concluded that "the disturbances and shock waves are simply a function of the longitudinal variation of the cross-sectional area" – that is, the effect of the wings ...
Supercritical fluids have found application in a variety of fields, ranging from the extraction of floral fragrance from flowers to applications in food science such as creating decaffeinated coffee, functional food ingredients, pharmaceuticals, cosmetics, polymers, powders, bio- and functional materials, nano-systems, natural products ...
Anti-shock body is the name given by Richard T. Whitcomb to a pod positioned on the upper surface of a wing. [1] Its purpose is to reduce wave drag while travelling at transonic speeds (Mach 0.8–1.0), which includes the typical cruising range of conventional jet airliners.
Designers at Armstrong-Whitworth took the sonic area rule a step further in their proposed M-Wing, in which the wing was first swept forward and then to the rear. This allowed the fuselage to be narrowed in front of the root as well as behind it, leading to a smoother fuselage that remained wider on average than one using a classic swept wing.
However, different criteria still allow to distinguish liquid-like and more gas-like states of a supercritical fluid. These criteria result in different boundaries in the pT plane. These lines emanate either from the critical point, or from the liquid–vapor boundary (boiling curve) somewhat below the critical point.
All of the compressibility factor values are calculated by a proper equation of state, which can generate appropriate z values for temperatures not close to the critical zone. The main advantages of this method are simplicity in procedure, commercial availability of instruments, and the large ranges of pressure and temperature in which this ...
The supercritical solvent is passed into a vessel at lower pressure than the extraction vessel. The density, and hence dissolving power, of supercritical fluids varies sharply with pressure, and hence the solubility in the lower density CO 2 is much lower, and the material precipitates for collection. It is possible to fractionate the dissolved ...