Search results
Results from the WOW.Com Content Network
In this model the red fluid – initially on top, and afterwards below – represents a more dense fluid and the blue fluid represents one which is less dense. The Rayleigh–Taylor instability is another application of hydrodynamic stability and also occurs between two fluids but this time the densities of the fluids are different. [ 6 ]
Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at hydrostatic equilibrium [1] and "the pressure in a fluid or exerted by a fluid on an immersed body". [ 2 ] It encompasses the study of the conditions under which fluids are at rest in stable equilibrium as opposed to fluid dynamics , the study of fluids in motion.
In fluid mechanics the term static pressure refers to a term in Bernoulli's equation written words as static pressure + dynamic pressure = total pressure. Since pressure measurements at any single point in a fluid always give the static pressure value, the 'static' is often dropped.
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
A fluid is flowing between and in contact with two horizontal surfaces of contact area A. A differential shell of height Δy is utilized (see diagram below). Diagram of the shell balance process in fluid mechanics. The top surface is moving at velocity U and the bottom surface is stationary. Density of fluid = ρ; Viscosity of fluid = μ
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, density, speed and height. Bernoulli's principle states that an increase in the speed of a parcel of fluid occurs simultaneously with a decrease in either the pressure or the height above a datum. [1]:
In fluid dynamics, a stagnation point is a point in a flow field where the local velocity of the fluid is zero. [1]: § 3.2 The Bernoulli equation shows that the static pressure is highest when the velocity is zero and hence static pressure is at its maximum value at stagnation points: in this case static pressure equals stagnation pressure.
The Navier–Stokes equations are strictly a statement of the balance of momentum. To fully describe fluid flow, more information is needed, how much depending on the assumptions made. This additional information may include boundary data (no-slip, capillary surface, etc.), conservation of mass, balance of energy, and/or an equation of state.