Search results
Results from the WOW.Com Content Network
The topics treated include arithmetic (fractions, square roots, profit and loss, simple interest, the rule of three, and regula falsi) and algebra (simultaneous linear equations and quadratic equations), and arithmetic progressions. In addition, there is a handful of geometric problems (including problems about volumes of irregular solids).
Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...
Around 19 school boards from 14 states have adopted or adapted the books. [11] Those who wish to adopt the textbooks are required to send a request to NCERT, upon which soft copies of the books are received. The material is press-ready and may be printed by paying a 5% royalty, and by acknowledging NCERT. [11]
The two right triangles with leg and hypotenuse (7,13) and (13,17) have equal third sides of length .The square of this side, 120, is a congruum: it is the difference between consecutive values in the arithmetic progression of squares 7 2, 13 2, 17 2.
Linnik's theorem (1944) concerns the size of the smallest prime in a given arithmetic progression. Linnik proved that the progression a + nd (as n ranges through the positive integers) contains a prime of magnitude at most cd L for absolute constants c and L. Subsequent researchers have reduced L to 5.
For example, the sequence,,,,, … is not an arithmetic progression, but is instead generated by starting with 17 and adding either 3 or 5, thus allowing multiple common differences to generate it. A semilinear set generalizes this idea to multiple dimensions – it is a set of vectors of integers, rather than a set of integers.
Van der Waerden's theorem is a theorem in the branch of mathematics called Ramsey theory.Van der Waerden's theorem states that for any given positive integers r and k, there is some number N such that if the integers {1, 2, ..., N} are colored, each with one of r different colors, then there are at least k integers in arithmetic progression whose elements are of the same color.
There has been separate computational work to find large arithmetic progressions in the primes. The Green–Tao paper states 'At the time of writing the longest known arithmetic progression of primes is of length 23, and was found in 2004 by Markus Frind, Paul Underwood, and Paul Jobling: 56211383760397 + 44546738095860 · k ; k = 0, 1 ...