Search results
Results from the WOW.Com Content Network
The properties involving multiplication, division, and exponentiation generally require that a and n are integers. Identity: (a mod n) mod n = a mod n. nx mod n = 0 for all positive integer values of x. If p is a prime number which is not a divisor of b, then abp−1 mod p = a mod p, due to Fermat's little theorem.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
If k a ≡ k b (mod m) and k is coprime with m, then a ≡ b (mod m). If k a ≡ k b (mod k m) and k ≠ 0, then a ≡ b (mod m). The last rule can be used to move modular arithmetic into division. If b divides a, then (a/b) mod m = (a mod b m) / b. The modular multiplicative inverse is defined by the following rules:
Montgomery modular multiplication relies on a special representation of numbers called Montgomery form. The algorithm uses the Montgomery forms of a and b to efficiently compute the Montgomery form of ab mod N. The efficiency comes from avoiding expensive division operations. Classical modular multiplication reduces the double-width product ab ...
Ceiling function. In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor (x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil (x). [1]
The cell cycle in eukaryotes: I = Interphase, M = Mitosis, G 0 = Gap 0, G 1 = Gap 1, G 2 = Gap 2, S = Synthesis, G 3 = Gap 3. Cell division is the process by which a parent cell divides into two daughter cells. [1] Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome (s) before dividing.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Modulus (algebraic number theory) In mathematics, in the field of algebraic number theory, a modulus (plural moduli) (or cycle, [1] or extended ideal[2]) is a formal product of places of a global field (i.e. an algebraic number field or a global function field). It is used to encode ramification data for abelian extensions of a global field.