Search results
Results from the WOW.Com Content Network
Strike and dip are generally written as 'strike/dip' or 'dip direction,dip', with the degree symbol typically omitted. The general alphabetical dip direction (N, SE, etc) can be added to reduce ambiguity. For a feature with a dip of 45° and a dip direction of 75°, the strike and dip can be written as 345/45 NE, 165/45 NE, or 075,45.
A fault which has a component of dip-slip and a component of strike-slip is termed an oblique-slip fault. Nearly all faults have some component of both dip-slip and strike-slip; hence, defining a fault as oblique requires both dip and strike components to be measurable and significant.
This regime dominated by normal dip-slip faults. A vertical σ₃ is classified as a thrust regime. These are dominated by reverse dip-slip faults with σ₁ once again parallel to motion. The third regime is characterized by a vertical σ₂ and dominated by both left lateral and right lateral strike-slip faults. [2] Observed normal fault dip ...
An idealized strike-slip fault runs in a straight line with a vertical dip and has only horizontal motion, thus there is no change in topography due to motion of the fault. In reality, as strike-slip faults become large and developed, their behavior changes and becomes more complex. A long strike-slip fault follows a staircase-like trajectory ...
Rake is used to describe the direction of fault motion with respect to the strike (measured anticlockwise from the horizontal, up is positive; values between −180° and 180°): left-lateral strike slip: rake near 0° right-lateral strike slip: rake near 180° normal: rake near −90° reverse/thrust: rake near +90°
In nature, linear features are uncommon and can help identify geologic features like faults because of their linear fault traces. [2] Dip separation can also occur when motion of the fault is perpendicular to the fault trace. That is, the fault blocks are pulled away from each other or pushed towards each other. This is known as a dip-slip ...
The orientation of the lineation can then be calculated from the rake and strike-dip information of the plane it was measured from, using a stereographic projection. If a fault has lineations formed by movement on the plane, e.g.; slickensides , this is recorded as a lineation, with a rake, and annotated as to the indication of throw on the fault.
The maps are superimposed over a topographic map base produced by Ordnance Survey (OS), and use symbols to represent fault lines, strike and dip or geological units, boreholes etc. Colors are used to represent different geological units. Explanatory booklets (memoirs) are produced for many sheets at the 1:50,000 scale.