Search results
Results from the WOW.Com Content Network
Particle velocity (denoted v or SVL) is the velocity of a particle (real or imagined) in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound , but it can also be a transverse wave as with the vibration of a taut string.
In the de Broglie hypothesis, the velocity of a particle equals the group velocity of the matter wave. [ 2 ] : 214 In isotropic media or a vacuum the group velocity of a wave is defined by: v g = ∂ ω ( k ) ∂ k {\displaystyle \mathbf {v_{g}} ={\frac {\partial \omega (\mathbf {k} )}{\partial \mathbf {k} }}} The relationship between the ...
Interactions in the Standard Model. All Feynman diagrams in the model are built from combinations of these vertices. q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), m B is any boson with mass. In diagrams with multiple particle ...
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
The above relation between wave momentum M and wave energy density E is valid within the framework of Stokes' first definition. However, for waves perpendicular to a coast line or in closed laboratory wave channel, the second definition (S2) is more appropriate. These wave systems have zero mass flux and momentum when using the second ...
A schematic diagram of a shock wave situation with the density , velocity , and temperature indicated for each region.. The Rankine–Hugoniot conditions, also referred to as Rankine–Hugoniot jump conditions or Rankine–Hugoniot relations, describe the relationship between the states on both sides of a shock wave or a combustion wave (deflagration or detonation) in a one-dimensional flow in ...
The red square moves with the phase velocity, and the green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square traverses the figure in the time it takes the green dot to traverse half. The dispersion relation for deep water waves is often written as
Trajectory of a particle with initial position vector r 0 and velocity v 0, subject to constant acceleration a, all three quantities in any direction, and the position r(t) and velocity v(t) after time t. The initial position, initial velocity, and acceleration vectors need not be collinear, and the equations of motion take an almost identical ...