Search results
Results from the WOW.Com Content Network
Example of one of two shortest-path trees where the root vertex is the red square vertex. The edges in the tree are indicated with green lines while the two dashed lines are edges in the full graph but not in the tree. The numbers beside the vertices indicate the distance from the root vertex.
Download QR code; In other projects ... Example of a shortest-path tree. Date: 10 July 2022: Source: ... Uploaded while editing "Shortest-path tree" on en.wikipedia.org:
The following example shows how Suurballe's algorithm finds the shortest pair of disjoint paths from A to F. Figure A illustrates a weighted graph G. Figure B calculates the shortest path P 1 from A to F (A–B–D–F). Figure C illustrates the shortest path tree T rooted at A, and the computed distances from A to every vertex (u).
Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...
The shortest path in a graph can be computed using Dijkstra's algorithm but, given that road networks consist of tens of millions of vertices, this is impractical. [1] Contraction hierarchies is a speed-up method optimized to exploit properties of graphs representing road networks. [2] The speed-up is achieved by creating shortcuts in a ...
Examples of link-state routing protocols include Open Shortest Path First (OSPF) and Intermediate System to Intermediate System (IS-IS). [ 2 ] The link-state protocol is performed by every switching node in the network (i.e., nodes which are prepared to forward packets; in the Internet , these are called routers ). [ 3 ]
It is also called the optimum distance spanning tree, shortest total path length spanning tree, minimum total distance spanning tree, or minimum average distance spanning tree. In an unweighted graph, this is the spanning tree of minimum Wiener index. [1] Hu (1974) writes that the problem of constructing these trees was proposed by Francesco ...
One example is the constrained shortest path problem, [16] which attempts to minimize the total cost of the path while at the same time maintaining another metric below a given threshold. This makes the problem NP-complete (such problems are not believed to be efficiently solvable for large sets of data, see P = NP problem ).