enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diffusion model - Wikipedia

    en.wikipedia.org/wiki/Diffusion_model

    The goal of diffusion models is to learn a diffusion process for a given dataset, such that the process can generate new elements that are distributed similarly as the original dataset. A diffusion model models data as generated by a diffusion process, whereby a new datum performs a random walk with drift through the space of all possible data. [2]

  3. Stable Diffusion - Wikipedia

    en.wikipedia.org/wiki/Stable_Diffusion

    This paper describes the latent diffusion model (LDM). This is the backbone of the Stable Diffusion architecture. Classifier-Free Diffusion Guidance (2022). [29] This paper describes CFG, which allows the text encoding vector to steer the diffusion model towards creating the image described by the text.

  4. Latent diffusion model - Wikipedia

    en.wikipedia.org/wiki/Latent_Diffusion_Model

    The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.

  5. Automatic1111 - Wikipedia

    en.wikipedia.org/wiki/Automatic1111

    AUTOMATIC1111 Stable Diffusion Web UI (SD WebUI, A1111, or Automatic1111 [3]) is an open source generative artificial intelligence program that allows users to generate images from a text prompt. [4] It uses Stable Diffusion as the base model for its image capabilities together with a large set of extensions and features to customize its output.

  6. Fréchet inception distance - Wikipedia

    en.wikipedia.org/wiki/Fréchet_inception_distance

    The Fréchet inception distance (FID) is a metric used to assess the quality of images created by a generative model, like a generative adversarial network (GAN) [1] or a diffusion model. [ 2 ] [ 3 ] The FID compares the distribution of generated images with the distribution of a set of real images (a "ground truth" set).

  7. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    Analogously, a classifier based on a generative model is a generative classifier, while a classifier based on a discriminative model is a discriminative classifier, though this term also refers to classifiers that are not based on a model. Standard examples of each, all of which are linear classifiers, are: generative classifiers:

  8. Text-to-image model - Wikipedia

    en.wikipedia.org/wiki/Text-to-image_model

    An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.

  9. DreamBooth - Wikipedia

    en.wikipedia.org/wiki/DreamBooth

    The methodology used to run implementations of DreamBooth involves the fine-tuning the full UNet component of the diffusion model using a few images (usually 3--5) depicting a specific subject. Images are paired with text prompts that contain the name of the class the subject belongs to, plus a unique identifier.