enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Product order - Wikipedia

    en.wikipedia.org/wiki/Product_order

    The lexicographic combination of two total orders is a linear extension of their product order, and thus the product order is a subrelation of the lexicographic order. [3] The Cartesian product with the product order is the categorical product in the category of partially ordered sets with monotone functions. [7]

  3. Product of rings - Wikipedia

    en.wikipedia.org/wiki/Product_of_rings

    A product of two or more non-trivial rings always has nonzero zero divisors: if x is an element of the product whose coordinates are all zero except p i (x) and y is an element of the product with all coordinates zero except p j (y) where i ≠ j, then xy = 0 in the product ring.

  4. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value). [4] One can similarly define the Cartesian product of n sets, also known as an n-fold Cartesian product, which can be represented by an n-dimensional array, where each element is an n-tuple.

  5. Product (category theory) - Wikipedia

    en.wikipedia.org/wiki/Product_(category_theory)

    In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces.

  6. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...

  7. Direct product - Wikipedia

    en.wikipedia.org/wiki/Direct_product

    This induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. More abstractly, one talks about the product in category theory, which formalizes these notions. Examples are the product of sets, groups (described below), rings, and other algebraic structures.

  8. Pullback (category theory) - Wikipedia

    en.wikipedia.org/wiki/Pullback_(category_theory)

    In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms f : X → Z and g : Y → Z with a common codomain. The pullback is written P = X × f, Z, g Y.

  9. Naive set theory - Wikipedia

    en.wikipedia.org/wiki/Naive_set_theory

    If A and B are sets, then the Cartesian product (or simply product) is defined to be: A × B = {(a,b) | a ∈ A and b ∈ B}. That is, A × B is the set of all ordered pairs whose first coordinate is an element of A and whose second coordinate is an element of B.