Search results
Results from the WOW.Com Content Network
Close-up of fish melanophores. Fish coloration is produced through specialized cells called chromatophores. The dermal chromatophore is a basic color unit in amphibians, reptiles, and fish which has three cell layers: "the xanthophore (contains carotenoid and pteridine pigments), the iridophore (reflects color structurally), and the melanophore (contains melanin)". [5]
Fish and frog melanophores are cells that can change colour by dispersing or aggregating pigment-containing bodies. Chromatophores are special pigment-containing cells that may change their size, but more often retain their original size but allow the pigment within them to become redistributed, thus varying the colour and pattern of the animal.
Chromatophores are cells that produce color, of which many types are pigment-containing cells, or groups of cells, found in a wide range of animals including amphibians, fish, reptiles, crustaceans and cephalopods. Mammals and birds, in contrast, have a class of cells called melanocytes for coloration.
Dispersing melanosomes to the periphery causes the cell to appear darker; concentrating melanosomes towards the center will cause the cell to appear lighter color. This is how a photoprotective system works for the fish on a molecular level. [3] Recently, melanosomes were found in spiders as well. [4]
FISH, on the other hand, does not require living cells and can be quantified automatically, a computer counts the fluorescent dots present. However, a trained technologist is required to distinguish subtle differences in banding patterns on bent and twisted metaphase chromosomes. FISH can be incorporated into Lab-on-a-chip microfluidic device ...
Most fish species have color vision. There are some species that are capable of seeing ultraviolet while some are sensitive to polarized light. [9] The fish retina has rod cells that provide high visual sensitivity in low light conditions and cone cells that provide higher temporal and spatial resolution than the rod cells are capable of.
Fish have cells called chromatophores that produce pigments that reflect light and give the fish coloration. The color of a goldfish is determined by their diet, water quality, and exposure to light, along with age and health. [48] Because goldfish eat live plants, their presence in a planted aquarium can be problematic.
Pigment color differs from structural color in that it is the same for all viewing angles, whereas structural color is the result of selective reflection or iridescence, usually because of multilayer structures. For example, butterfly wings typically contain structural color, although many butterflies have cells that contain pigment as well. [3]