Search results
Results from the WOW.Com Content Network
The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements.As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules.
The Conway polynomial is chosen to be primitive, so that each of its roots generates the multiplicative group of the associated finite field. The field F p n contains a unique subfield isomorphic to F p m for each m dividing n, and this accounts for all the subfields of F p n. For any m dividing n the cyclic group F * p n contains a subgroup ...
In field theory, a primitive element of a finite field GF(q) is a generator of the multiplicative group of the field. In other words, α ∈ GF(q) is called a primitive element if it is a primitive (q − 1) th root of unity in GF(q); this means that each non-zero element of GF(q) can be written as α i for some natural number i.
Let V be one-dimensional. Then any finite group faithfully acting on V is a subgroup of the multiplicative group of the field K, and hence a cyclic group.It follows that G consists of roots of unity of order dividing n, where n is its order, so G is generated by pseudoreflections.
The map sending a finite-dimensional F-vector space to its dimension induces an isomorphism for any field F. Next, =, the multiplicative group of F. [1] The second K-group of a field is described in terms of generators and relations by Matsumoto's theorem.
The simplest examples of Galois rings are important special cases: The Galois ring GR(p n, 1) is the ring of integers modulo p n. The Galois ring GR(p, r) is the finite field of order p r. A less trivial example is the Galois ring GR(4, 3). It is of characteristic 4 and has 4 3 = 64 elements.
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix ...