enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weighted sum model - Wikipedia

    en.wikipedia.org/wiki/Weighted_Sum_Model

    In decision theory, the weighted sum model (WSM), [1] [2] also called weighted linear combination (WLC) [3] or simple additive weighting (SAW), [4] is the best known and simplest multi-criteria decision analysis (MCDA) / multi-criteria decision making method for evaluating a number of alternatives in terms of a number of decision criteria.

  3. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    This function is real-valued because it corresponds to a random variable that is symmetric around the origin; however characteristic functions may generally be complex-valued. In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution.

  4. Bayesian information criterion - Wikipedia

    en.wikipedia.org/wiki/Bayesian_information_criterion

    ^ = the maximized value of the likelihood function of the model , i.e. ^ = (^,), where {^} are the parameter values that maximize the likelihood function and is the observed data; n {\displaystyle n} = the number of data points in x {\displaystyle x} , the number of observations , or equivalently, the sample size;

  5. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    If the integral of a function f is uniformly bounded over all intervals, and g is a non-negative monotonically decreasing function, then the integral of fg is a convergent improper integral. Notes [ edit ]

  6. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    A Binomial distributed random variable X ~ B(n, p) can be considered as the sum of n Bernoulli distributed random variables. So the sum of two Binomial distributed random variables X ~ B(n, p) and Y ~ B(m, p) is equivalent to the sum of n + m Bernoulli distributed random variables, which means Z = X + Y ~ B(n + m, p). This can also be proven ...

  7. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  8. Residual sum of squares - Wikipedia

    en.wikipedia.org/wiki/Residual_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n× 1 vector of the ...

  9. TOPSIS - Wikipedia

    en.wikipedia.org/wiki/TOPSIS

    The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria decision analysis method, which was originally developed by Ching-Lai Hwang and Yoon in 1981 [1] with further developments by Yoon in 1987, [2] and Hwang, Lai and Liu in 1993. [3]