Search results
Results from the WOW.Com Content Network
The Rademacher distribution, which takes value 1 with probability 1/2 and value −1 with probability 1/2. The binomial distribution, which describes the number of successes in a series of independent Yes/No experiments all with the same probability of success.
This is the same as saying that the probability of event {1,2,3,4,6} is 5/6. This event encompasses the possibility of any number except five being rolled. The mutually exclusive event {5} has a probability of 1/6, and the event {1,2,3,4,5,6} has a probability of 1, that is, absolute certainty.
Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...
However, while such research is motivated (to some degree) by applied problems, it is usually the mathematical aspects of the problems that are of most interest to researchers (as is typical of applied mathematics in general). Applied probabilists are particularly concerned with the application of stochastic processes, and probability more ...
Thus, the probability that a number starts with the digits 3, 1, 4 (some examples are 3.14, 3.142, π, 314280.7, and 0.00314005) is log 10 (1 + 1/314) ≈ 0.00138, as in the box with the log-log graph on the right. This result can be used to find the probability that a particular digit occurs at a given position within a number.
This is a list of probability topics. It overlaps with the (alphabetical) list of statistical topics. There are also the outline of probability and catalog of articles in probability theory. For distributions, see List of probability distributions. For journals, see list of probability journals.
In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.
The mathematics of gambling is a collection of probability applications encountered in games of chance and can get included in game theory.From a mathematical point of view, the games of chance are experiments generating various types of aleatory events, and it is possible to calculate by using the properties of probability on a finite space of possibilities.