Search results
Results from the WOW.Com Content Network
The natural logarithm of x is the power to which e would have to be raised to equal x. For example, ln 7.5 is 2.0149..., because e 2.0149... = 7.5. The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area ...
The number r is maximal in the following sense: there always exists a complex number x with | x − c | = r such that no analytic continuation of the series can be defined at x. The power series expansion of the inverse function of an analytic function can be determined using the Lagrange inversion theorem.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Power series. Define e x as the value of the infinite series = ... Ln(y) = x, which implies that y = e x, where e x is in the sense of definition 3. We have ...
For example, the logarithm of 1000 to base 10 is 3, because 1000 is 10 to the 3 rd power: 1000 = 10 3 = 10 × 10 × 10. More generally, if x = b y, then y is the logarithm of x to base b, written log b x, so log 10 1000 = 3. As a single-variable function, the logarithm to base b is the inverse of exponentiation with base b.
The approximation ( +) and its equivalent form + ( + ( +)) can be obtained by rearranging Stirling's extended formula and observing a coincidence between the resultant power series and the Taylor series expansion of the hyperbolic sine function.
However, if the series is only known to be divergent, but for reasons other than diverging to infinity, then the claim of the theorem may fail: take, for example, the power series for +. At z = 1 {\\displaystyle z=1} the series is equal to 1 − 1 + 1 − 1 + ⋯ , {\\displaystyle 1-1+1-1+\\cdots ,} but 1 1 + 1 = 1 2 . {\\displaystyle {\\tfrac ...
The series was discovered independently by Johannes Hudde (1656) [1] and Isaac Newton (1665) but neither published the result. Nicholas Mercator also independently discovered it, and included values of the series for small values in his 1668 treatise Logarithmotechnia; the general series was included in John Wallis's 1668 review of the book in the Philosophical Transactions.