Search results
Results from the WOW.Com Content Network
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
An internal iterator is a higher-order function (often taking anonymous functions) that traverses a collection while applying a function to each element. For example, Python's map function applies a caller-defined function to each element:
The following containers are defined in the current revision of the C++ standard: array, vector, list, forward_list, deque. Each of these containers implements different algorithms for data storage, which means that they have different speed guarantees for different operations: [1] array implements a compile-time non-resizable array.
The loop calls the Iterator::next method on the iterator before executing the loop body. If Iterator::next returns Some(_) , the value inside is assigned to the pattern and the loop body is executed; if it returns None , the loop is terminated.
For example, a vector would have a random-access iterator, but a list only a bidirectional iterator. Iterators are the major feature that allow the generality of the STL. For example, an algorithm to reverse a sequence can be implemented using bidirectional iterators, and then the same implementation can be used on lists, vectors and deques.
Some programming languages provide operations that return the size (number of elements) of a vector, or, more generally, range of each index of an array. In C and C++ arrays do not support the size function, so programmers often have to declare separate variable to hold the size, and pass it to procedures as a separate parameter.
GLib provides advanced data structures, such as memory chunks, doubly and singly linked lists, hash tables, dynamic strings and string utilities, such as a lexical scanner, string chunks (groups of strings), dynamic arrays, balanced binary trees, N-ary trees, quarks (a two-way association of a string and a unique integer identifier), keyed data lists, relations, and tuples.
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...