Search results
Results from the WOW.Com Content Network
Particle aggregation is a widespread phenomenon, which spontaneously occurs in nature but is also widely explored in manufacturing. Some examples include. Formation of river delta. When river water carrying suspended sediment particles reaches salty water, particle aggregation may be one of the factors responsible for river delta formation.
In this sense, collapse models provide a unified description of microscopic and macroscopic systems, avoiding the conceptual problems associated to measurements in quantum theory. The most well-known examples of such theories are: Ghirardi–Rimini–Weber (GRW) model; Continuous spontaneous localization (CSL) model; Diósi–Penrose (DP) model
For example, the system may be a single electron, then the ensemble will be "the set of all single electrons subjected to the same state preparation technique." He uses the example of a low-intensity electron beam prepared with a narrow range of momenta. Each prepared electron is a system, the ensemble consists of many such systems.
Microscopic here implies that quantum mechanics has to be used to provide an accurate description of the system. Many can be anywhere from three to infinity (in the case of a practically infinite, homogeneous or periodic system, such as a crystal), although three- and four-body systems can be treated by specific means (respectively the Faddeev and Faddeev–Yakubovsky equations) and are thus ...
Collapse is one of the two processes by which quantum systems evolve in time; the other is the continuous evolution governed by the Schrödinger equation. [2] While standard quantum mechanics postulates wave function collapse to connect quantum to classical models, some extension theories propose physical processes that cause collapse.
To alleviate this problem, a new concept must be introduced: the steric factor ρ. It is defined as the ratio between the experimental value and the predicted one (or the ratio between the frequency factor and the collision frequency):
For premium support please call: 800-290-4726 more ways to reach us
Oxide dispersion-strengthened alloy (ODS) is an example of oxide particle dispersion into a metal medium, which improves the high temperature tolerance of the material. Therefore these alloys have several applications in the nuclear energy industry, where materials must withstand extremely high temperatures to maintain operation.