Search results
Results from the WOW.Com Content Network
A neutron star merger is the stellar collision of neutron stars. When two neutron stars fall into mutual orbit, they gradually spiral inward due to the loss of energy emitted as gravitational radiation. [1] When they finally meet, their merger leads to the formation of either a more massive neutron star, or—if the mass of the remnant exceeds ...
Electromagnetic observations help support the theory that neutron star mergers contribute to rapid neutron capture (r-process) nucleosynthesis [28] —previously assumed to be associated with supernova explosions—and are therefore the primary source of r-process elements heavier than iron, [1] including gold and platinum. [48]
The basic model for thermal transients from neutron star mergers was introduced by Li-Xin Li and Bohdan Paczyński in 1998. [1] In their work, they suggested that the radioactive ejecta from a neutron star merger is a source for powering thermal transient emission, later dubbed kilonova. [17]
Neutron star mergers are a recently discovered major source of elements produced in the r-process. When two neutron stars collide, a significant amount of neutron-rich matter may be ejected which then quickly forms heavy elements. Cosmic ray spallation is a process wherein cosmic rays impact nuclei and fragment them.
When two neutron stars orbit each other closely, they spiral inward as time passes due to gravitational radiation. When they meet, their merger leads to the formation of either a heavier neutron star or a black hole, depending on whether the mass of the remnant exceeds the Tolman–Oppenheimer–Volkoff limit. This creates a magnetic field that ...
Nuclear physics experiments address stability (i.e., lifetimes and masses) for atomic nuclei well beyond the regime of stable nuclides into the realm of radioactive/unstable nuclei, almost to the limits of bound nuclei (the drip lines), and under high density (up to neutron star matter) and high temperature (plasma temperatures up to 10 9 K ...
The slow neutron-capture process, or s-process, is a series of reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The s -process is responsible for the creation ( nucleosynthesis ) of approximately half the atomic nuclei heavier than iron .
In June 2020, astronomers reported details of a compact binary merging, in the "mass gap" of cosmic collisions, of a first-ever 2.50–2.67 M ☉ "mystery object", either an extremely heavy neutron star (that was theorized not to exist) or a too-light black hole, with a 22.2–24.3 M ☉ black hole, that was detected as the gravitational wave GW190814.