Search results
Results from the WOW.Com Content Network
The structure of hydrogen disulfide is similar to that of hydrogen peroxide, with C 2 point group symmetry. Both molecules are distinctly nonplanar. The dihedral angle between the H a −S−S and S−S−H b planes is 90.6°, compared with 111.5° in H 2 O 2. The H−S−S bond angle is 92°, close to 90° for unhybridized divalent sulfur. [1]
1) Fe + H 2 O → FeO + H 2 2) Fe + 3 H 2 O → Fe 2 O 3 + 3 H 2 3) Fe + 4 H 2 O → Fe 3 O 4 + 4 H 2. Many metals react similarly with water leading to the production of hydrogen. [68] In some situations, this H 2-producing process is problematic as is the case of zirconium cladding on nuclear fuel rods. [69]
Hydrogen telluride is the inorganic compound with the formula H 2 Te.A hydrogen chalcogenide and the simplest hydride of tellurium, it is a colorless gas.Although unstable in ambient air, the gas can exist long enough to be readily detected by the odour of rotting garlic at extremely low concentrations; or by the revolting odour of rotting leeks at somewhat higher concentrations.
Hydrogen deuteride is an isotopologue of dihydrogen composed of two isotopes of hydrogen: the majority isotope 1 H and 2 H . Its proper molecular formula is 1 H 2 H, but for simplification, it is usually written as HD.
Hydrogen (1 H) has three naturally occurring isotopes: 1 H, 2 H, and 3 H. 1 H and 2 H are stable, while 3 H has a half-life of 12.32(2) years. [3] [nb 1] Heavier isotopes also exist; all are synthetic and have a half-life of less than 1 zeptosecond (10 −21 s). [4] [5] Of these, 5 H is the least stable, while 7 H is the most.
Standard enthalpy of combustion is the enthalpy change when one mole of an organic compound reacts with molecular oxygen (O 2) to form carbon dioxide and liquid water. For example, the standard enthalpy of combustion of ethane gas refers to the reaction C 2 H 6 (g) + (7/2) O 2 (g) → 2 CO 2 (g) + 3 H 2 O (l).
Glucose (C 6 H 12 O 6), ribose (C 5 H 10 O 5), Acetic acid (C 2 H 4 O 2), and formaldehyde (CH 2 O) all have different molecular formulas but the same empirical formula: CH 2 O.This is the actual molecular formula for formaldehyde, but acetic acid has double the number of atoms, ribose has five times the number of atoms, and glucose has six times the number of atoms.
Formate salts have the formula M(O 2 CH)(H 2 O) x. Such salts are prone to decarboxylation. For example, hydrated nickel formate decarboxylates at about 200 °C with reduction of the Ni 2+ to finely powdered nickel metal: Ni(HCO 2) 2 (H 2 O) 2 → Ni + 2 CO 2 + 2 H 2 O + H 2. Such fine powders are useful as hydrogenation catalysts. [1]