enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ada Lovelace (microarchitecture) - Wikipedia

    en.wikipedia.org/wiki/Ada_Lovelace_(micro...

    Ada Lovelace, also referred to simply as Lovelace, [1] is a graphics processing unit (GPU) microarchitecture developed by Nvidia as the successor to the Ampere architecture, officially announced on September 20, 2022. It is named after the 19th century English mathematician Ada Lovelace, [2] one of the first computer programmers.

  3. Ampère's force law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_force_law

    In magnetostatics, the force of attraction or repulsion between two current-carrying wires (see first figure below) is often called Ampère's force law. The physical origin of this force is that each wire generates a magnetic field , following the Biot–Savart law , and the other wire experiences a magnetic force as a consequence, following ...

  4. Ampere - Wikipedia

    en.wikipedia.org/wiki/Ampere

    Ampère's force law [15] [16] states that there is an attractive or repulsive force between two parallel wires carrying an electric current. This force is used in the formal definition of the ampere. The SI unit of charge, the coulomb, was then defined as "the quantity of electricity carried in 1 second by a current of 1 ampere".

  5. Inductive coupling - Wikipedia

    en.wikipedia.org/wiki/Inductive_coupling

    A changing current through the first wire creates a changing magnetic field around it by Ampere's circuital law. The changing magnetic field induces an electromotive force (EMF) voltage in the second wire by Faraday's law of induction. The amount of inductive coupling between two conductors is measured by their mutual inductance.

  6. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by Maxwell is no longer included. The vector calculus formalism below, the work of Oliver Heaviside, [6] [7] has become standard.

  7. Ampère's circuital law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_circuital_law

    In classical electromagnetism, Ampère's circuital law (not to be confused with Ampère's force law) [1] relates the circulation of a magnetic field around a closed loop to the electric current passing through the loop. James Clerk Maxwell derived it using hydrodynamics in his 1861 published paper "On Physical Lines of Force". [2]

  8. History of electromagnetic theory - Wikipedia

    en.wikipedia.org/wiki/History_of_electromagnetic...

    When an element of a circuit exerts a force on another element of a circuit, that force always tends to urge the second one in a direction at right angles to its own direction. André-Marie Ampère. Ampere brought a multitude of phenomena into theory by his investigations of the mechanical forces between conductors supporting currents and magnets.

  9. History of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/History_of_Maxwell's_equations

    In particular, it represents lines of inverse-square law force. The extension of the above considerations confirms that where B is to H, and where J is to ρ, then it necessarily follows from Gauss's law and from the equation of continuity of charge that E is to D i.e. B parallels with E, whereas H parallels with D.