enow.com Web Search

  1. Ad

    related to: elimination equations without multiplication examples

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.

  3. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    Examples of such matrices commonly arise from the discretization of 1D Poisson equation and natural cubic spline interpolation. Thomas' algorithm is not stable in general, but is so in several special cases, such as when the matrix is diagonally dominant (either by rows or columns) or symmetric positive definite ; [ 1 ] [ 2 ] for a more precise ...

  4. Elimination theory - Wikipedia

    en.wikipedia.org/wiki/Elimination_theory

    Quantifier elimination is a term used in mathematical logic to explain that, in some theories, every formula is equivalent to a formula without quantifier. This is the case of the theory of polynomials over an algebraically closed field , where elimination theory may be viewed as the theory of the methods to make quantifier elimination ...

  5. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Second, we solve the equation = for x. In both cases we are dealing with triangular matrices (L and U), which can be solved directly by forward and backward substitution without using the Gaussian elimination process (however we do need this process or equivalent to compute the LU decomposition itself).

  6. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    Consider a system of n linear equations for n unknowns, represented in matrix multiplication form as follows: = where the n × n matrix A has a nonzero determinant, and the vector = (, …,) is the column vector of the variables. Then the theorem states that in this case the system has a unique solution, whose individual values for the unknowns ...

  7. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    For a matrix with integer coefficients, the Hermite normal form is a row echelon form that can be calculated without introducing any denominator, by using Euclidean division or Bézout's identity. The reduced echelon form of a matrix with integer entries generally contains non-integer entries, because of the need of dividing by its leading ...

  8. Main theorem of elimination theory - Wikipedia

    en.wikipedia.org/wiki/Main_theorem_of...

    The main theorem of elimination theory is a corollary and a generalization of Macaulay's theory of multivariate resultant. The resultant of n homogeneous polynomials in n variables is the value of a polynomial function of the coefficients, which takes the value zero if and only if the polynomials have a common non-trivial zero over some field ...

  9. Fourier–Motzkin elimination - Wikipedia

    en.wikipedia.org/wiki/Fourier–Motzkin_elimination

    Fourier–Motzkin elimination, also known as the FME method, is a mathematical algorithm for eliminating variables from a system of linear inequalities. It can output real solutions. The algorithm is named after Joseph Fourier [ 1 ] who proposed the method in 1826 and Theodore Motzkin who re-discovered it in 1936.

  1. Ad

    related to: elimination equations without multiplication examples